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A review of the diverse roles of entropy and the second law in computationalthermo–� uid dynamics is presented.
Entropy computations are related to numerical error, convergence criteria, time-step limitations, and other sig-
ni� cant aspects of computational � uid � ow and heat transfer. The importance of the second law as a tool for
estimating error bounds and the overall scheme’s robustness is described. As computational methods become
more reliable and accurate, emerging applications involving the second law in the design of engineering thermal
� uid systems are described. Sample numerical results are presented and discussed for a multitude of applications
in compressible � ows, as well as problems with phase change heat transfer. Advantages and disadvantages of
different entropy-based methods are discussed, as well as areas of importance suggested for future research.

Nomenclature
cp = speci� c heat, J/kg ¢ K
E = total energy density, J/m3

F = entropy � ux
FF = � ux column vector
IS = entropy current
k = thermal conductivity,W/m ¢ K
P = pressure, N/m3

QQ = vector of conserved variables
q = heat � ux, W/m2

R = gas constant per unit mass, m2/s2 ¢ K
S = entropy density (volumetric), J/m3 ¢ K
PSgen = rate of entropy generation, W/m3 ¢ K
s = speci� c entropy, J/kg ¢ K
T = absolute temperature,K
t = time, s
U = internal energy density, J/m3

v = � uid velocity vector, m/s
x , y = Cartesian coordinates, m
° = ratio of speci� c heats
1 = increment or change of quantity
¹ = dynamic viscosity, kg/m ¢ s
½ = mass density, kg/m3

¿ = viscous stress, N/m2

8 = viscous dissipation function, 1/s2

Introduction

W E present a review of past advances in numerical analysis
using the second law of thermodynamics.Entropy serves as

a key parameter in achieving the theoretical limits of performance
and quality in many engineeringapplications.Togetherwith exergy,
it can shed new light on various � ow processes: from optimized
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� ow con� gurations in an aircraft engine to highly ordered crystal
structures (low entropy) in a turbine blade, as well as other appli-
cations. The many roles of entropy and the second law in computa-
tional � uid dynamics (CFD) will be reviewed.

Courant–Freidrichs–Lewy1 (CFL) provided a major contribution
to numerical analysis of thermo� uid problems.The literature in this
� eld oftenmentions that the CFL conditionestablishesa criterionin
restricting the time step for linear differential equations to achieve
numerical stability.However, it is not typically known that the CFL
condition originally had nothing to do with numerical stability be-
causethat termwas notphraseduntil the 1940sby a groupassociated
with von Neumann.2 The terminology remained, and today we un-
derstand the CFL condition as a necessary, and in some cases suf� -
cient, condition for both numerical stability and convergenceof lin-
ear equations.This paper will consider its link with the second law.

Subsequent advances included analytical techniques to deter-
mine the stability and convergence requirements for linear differ-
ential equations with constant coef� cients and periodic boundary
conditions.3 The basic question of numerical stability deals with
discretizationerrorand roundofferror.Discretizationerrorsare anal-
ogous to systematic errors that arise in experimentalmeasurements,
that is, they are a function of the method used. On the other hand,
roundoff errors are analogous to the unpredictableand unavoidable
errors that arise in the measurement process itself. Minimizing dis-
cretization errors requires very accurate approximations to terms
that appear in the differential equations of interest. Roundoff errors
often determine the success or failure of a method’s stability.

The issue of numerical stability, in a strong sense, deals with the
growth of the overall roundofferror.4 In a weak sense, the growth of
a single roundoff error is the question most frequentlyanswered be-
cause it can be answered much more easily and practically.5 Fourier
error analysis answers the question of weak stability, and it is as-
sumed that proof of weak stability, rigorous or heuristic, implies
strong numerical stability. In the modern, practical use of CFD
codes, we must often substitute heuristic arguments and rules of
thumb to establish a restriction on the time step for explicit meth-
ods and time-accurate solutions.Often, numerical experimentation
and trial and error are necessary to determine a method’s stability
bounds.

Typically neglected and often viewed as super� uous, the sec-
ond law of thermodynamics remains an esoteric and mysterious
subject.6 Nevertheless, the physical basis and analogies inferred
through the second law have signi� cance in computationalanalysis
of thermo� uid systems. This paper outlines the reasons and mecha-
nisms in which the secondlaw is applied, that is, numericalstability,
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subgrid modeling, convergencecriteria, numerical error, and so on.
The computed entropy generation includes the effects of various
responses of a thermo� uid system on the variationsof system prop-
erties. In this way, it can provide more relevant convergence and
other indicators than criteria based on a single entity alone.

The logic intrinsic to the second law enforces positive (com-
puted) entropy production rates, which previous authors have di-
rectly linked to stability criteria of numerical algorithms. Also, the
necessary direction of change in physical processes, as outlined by
the secondlaw, is useful in subgridmodeling.In regards to nonlinear
convergence, an entropy criterion for thermodynamic equilibrium
can be used for phase sequencingduring iterations of phase change
computations.These examples and others are detailed in this paper,
so that the relevance of the second law in numerical analysis is out-
lined. It is anticipated that these applications can demonstrate the
promising potential of actively incorporating the second law into
existing computer codes.

Second Law Formulation
Overview

The original background of thermodynamics, based on the sci-
ence of heat, was intended to account for common experiences in-
volvingenergyexchangebywork andheat.7 These experienceswere
formulated as the � rst law of thermodynamics, and together with
entropy and the second law, have become the main foundations for
the analysisof energysystems.8;9 In conjunctionwith thesephysical
systems, the concept of entropy has relevance in other applications,
including computational analysis of these systems.

For example,perpetualmotionmachinesviolatingthe secondlaw
in conventionalthermodynamicanalysishave an analogyin compu-
tational studies, namely, numerical errors and nonphysical results.
In this example, the physical basis in the second law offers a wider
perspectiveof all typesof numericalerrors, rather than only selected
types considered by a Taylor series analysis. Another example out-
lining the bene� ts of this physical basis involves error indicators,
which typically become useful only in a limit as the element size
approacheszero, with the mesh possessing certain features. Unlike
these methods, the computed entropy generationcan indicate when
the results are nonphysical, regardless of mesh spacing or element
shape. In these examples, the relevance of the second law arises
through its uni� ed, systematic, and physically based framework
for the numerical analysis. Other examples outlining the transition
and analogies from conventionalthermodynamicsto computational
analysis, based on the second law, will be described.

The energy and entropy balances for a system may be written as

E in ¡ Eout D 1E (1)

Sin ¡ Sout C Sgen D 1S (2)

where the subscripts in and out representthe transferof that quantity
with mass � ow, work, or heat and gen refers to the generation or
production of that quantity. S is a system property that represents
entropy per unit volume, whereas Sgen is a nonproperty because it
represents the generation of entropy. On a rate basis, the units of
PSgen become watts per cubic meter degrees Kelvin.

In Eq. (2), terms on the right-hand side represent the change in
the quantity. The � rst law, essentially, postulates the existence of a
thermodynamic variable, total energy, which is a property of state.
Energy can be exchanged between different forms, but not created
or destroyed. The second law postulates the existence of another
variable, totalentropy,which is also a propertyof state by de� nition.
Entropy and probabilitytheory are closely related.10 Unlike the � rst
law, the entropybalanceequationcontainsa nonnegativeproduction
term(establishedbyexperimentandelevatedto an axiomonparwith
the � rst law).

The functional relation between entropy and the extensive
thermodynamic variables can be interpreted from statistical
considerations.11¡13 The real world, effectively, generates entropy
accordingto the second law. These conceptsapply universallyto all
known physicalprocesses,and so it is evident that the second law in

particular may provide something of value if we expect mathemat-
ical and numerical solutions of differential equations to re� ect the
physical world. Pioneers who applied a second law or entropy con-
dition to numerical analysis realized this important discovery.14;15

The key lies in developing a mathematical formula that indicates
whether the second law is satis� ed or not. Many ways exist to ex-
press this mathematical formula, just like there are many ways to
state the second law. The essence of the second law postulates the
existence of a functional S that is concave in the dependentvariable
for which we have a differential equation.13 If we treat the entropy
S as another state variable that can be transferred across the bound-
aries of a system, then the concavity property of entropy effectively
translates into the balance equation (2) for the entropy that requires
nonnegative entropy generation.16

On a rate basis, the entropy transport equation may be written as

PSgen D PS C IS (3)

where PS is the time rate of change of entropy contained by the
system and IS is the entropycurrent density due to either mass � ow,
or heating,or both.The secondlaw stipulatesthat the rate of entropy
generationmust be nonnegativein all thermophysicalprocesses,that
is, PSgen ¸ 0.

Transport Form
The second law may be written in a transport form by writing the

entropy balance equation of an open thermodynamic system as a
partial differential equation as follows17:

PSgen D @.½s/

@t
C r ¢ .½vs/ C r ¢

³
krT

T

´
(4)

where s is the speci� c entropy density. For reversible processes
described by the inviscid � ow equations,entropy generationequals
zero identically. Such processes entail zero heat transfer, without
any form of irreversibilities, that is, mixing of two inviscid streams
of different temperatures,or unrestrainedexpansionof such � uid. In
this case,one can solvethegoverningequationswithout referenceto
the second law. However, in the presence of discontinuitiessuch as
shockwaves,entropygenerationmust be nonnegative.For example,
in the one-dimensionalshock tube problem,18 entropy generation is
nonnegative.The maximum value of the speci� c entropy across the
shock wave depends only on the upstream Mach number and the
ratio of speci� c heats, just like the other thermodynamic variables
in the Rankine–Hugoniot relations (see Refs. 19–21).

Positive De� nite Form
An alternativepositivede� nite form of the second law can be ob-

tained as follows. Consider the one-dimensionalform of the conser-
vation of mass, balance of momentum, and conservation of energy
equations,

@QQ
@t

C
@FF
@x

C
@FF v

@x
D 0 (5)

where FF and FFv are the convectiveand viscous� uxes, respectively.
The componentsof QQ are QQ1 D ½ , QQ2 D ½u, and QQ3 D ½e. The � ux
vectors are given by

FF D

2

4
½u

½u2 C p

½ue C pu

3

5 ; FF v D

2

4
0

¡¿

¡u¿ C q

3

5 (6)

The viscous effects associated with velocity gradients, which give
the shear stress, as well as heat conduction contributing to the heat
� ux, are

¿ D 4

3
¹

@u

@x
; q D ¡k

@T

@x
(7)

These relations are based on the standard constitutive relations
named after Stokes and Fourier, respectively (see Ref. 22).
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The algebraic row vector containing the gradients of the entropy
with respect to the conserved state variables is

S;Q D [s C u2=2¾ 2 ¡ ° =.° ¡ 1/; ¡u=¾ 2; 1=¾ 2] (8)

where ¾ 2 D RT D .° ¡ 1/.2QQ1QQ3 ¡ QQ2
2/=2QQ2

1 . In Eq. (8) the sub-
script notationwith a comma refers to differentiationwith respect to
the indicatedvariable.When the scalar product is takenwith Eq. (5),
and the chain rule and compatibility condition23 are used,

@S

@t
C @ F

@x
C S;Q ¢ @FFv

@x
D 0 (9)

On simplifying and using the constitutive relations for the stress
tensor and heat � ux, we get

@S

@t
C

@F

@x
C

@

@x

³
q

T

´
D

4

3

¹

T

³
@u

@x

´2

C
k

T 2

³
@T

@x

´2

Identifyingthe left-handside as the entropy generationfrom Eq. (4)
yields

PSgen D 4
3

¹

T

³
@u

@x

´2

C
k

T 2

³
@T

@x

´2

(10)

This result represents the one-dimensionalpositive de� nite form of
the second law of thermodynamics.Equation (10) requires nonneg-
ative entropy generation,which essentially restricts the coef� cients
of viscosityand conductivityto nonnegativevalues.The secondlaw,
when used in this capacity,effectivelyprescribesthe constitutivere-
lations allowed in physical theory. A derivation of this result from
kinetic theory usually follows a more complex line of reasoning.
The same expression can be constructed from the Navier–Stokes
equations, requiring a more lengthy derivation utilizing the contin-
uum extension of the Gibbs equation, which relates the entropy to
the temperature, pressure, mass density, and internal energy. When
Eq. (10) is generalizedto multidimensions,the positivede� nite form
of the second law becomes

PSgen D
³

¹8

T

´
C

µ
k.rT ¢ rT /

T 2

¶
(11)

where 8 refers to the viscous dissipation function.17

Entropy Equation of State
Inasmuchas entropyis not measureddirectly,but rather indirectly

through other variables, an equation of state is required to evaluate
entropy in terms of those variables. For incompressiblesubstances,
such as liquids or solids, the Gibbs equation yields a logarithmic
variation of entropy S with temperature, that is,

S.T / D S0 C ½cp

³
T

T0

´
(12)

where the subscript0 denotes a referencestate. For multiphasemix-
tures, reference values of s0 , cp , and T0 are required in each phase
to accommodate both sensible and latent heat components.24

For compressible � ows, the entropy can be expressed by

S ¡ S0 D ½R

µ
1

° ¡ 1

³
T

T0

´
¡

³
½

½0

´¶
(13)

S ¡ S0 D ½cv

µ
P=P0

.½=½0/°

¶
(14)

S ¡ S0

½0 R
D ½

½0

µ
1

° ¡ 1

³
T

T0

´
¡

³
½

½0

´¶
(15)

where Eq. (14) is derived from gasdynamics theory and Eq. (15) is
nondimensionalized.

Boundary Conditions
In addition to the preceding forms of the second law and equa-

tionsof state,boundaryconditionsare requiredto formulatefully the
second law. Once the conservation variables are determined, their
respective � uxes across the physical boundaries of the domain can
be determined for closure of the entropy � ows across those bound-
aries. Alternatively, the boundary entropy production rate can be
calculated directly from Eq. (11). In this approach, only the spa-
tial derivatives of temperature and velocity are computed along the
boundaries for the boundary values of entropy production rate. In
a numerical scheme, this approach would ensure positive de� nite
results for the boundary entropy production rates.

Concavity Property
Two importantmathematicalpropertiesof entropyhave emerged

as critically important for developing and applying the second law:
concavity and compatibility. The � rst property requires a negative
second derivative of entropy, that is,

S;QQ < 0 (16)

Equation (16) suggests that S;QQ must be a negativede� nite matrix,
as a consequenceof the second law, which requires that irreversible
processes produce entropy. Entropy is bounded from above as it
attains a maximum value at an equilibriumcondition.This physical
connection between the second law and concavity are clari� ed by
the following example.

Consider a rigid-materialbody at some temperature T immersed
in a thermal reservoir at a temperature of T0 , such as a hot rock
inside a cool room. Suppose T > T0 , and we let the cooling pro-
cess proceed from the initial time t to t0 when the body reaches
thermodynamicequilibriumwith its surroundings.Based on an en-
ergy balance, the heat transfer from the object equals the difference
between the object’s initial internal energy U and its � nal internal
energy U0 . Based on Eq. (2) with this heat out� ow leading to Sout,
the entropygenerationassociatedwith the coolingprocess becomes

Sgen D S0 ¡ S ¡ .1=T0/.U0 ¡ U / (17)

To write the change of energy in terms of the change of temper-
ature, we use the de� nition of speci� c heat (CV D @U=@T ) and a
standard thermodynamic relation, that is,

CV

T
D @S

@T
(18)

so that Eq. (17) becomes

Sgen D S0 ¡ S ¡ @S

@T


0

.T0 ¡ T / (19)

Equation (19) indicates the concavityproperty of entropyas a func-
tion of T .

To clarify this meaning of Eq. (19), considersome arbitrary func-
tion F D F.X/ such that F 00 < 0. The inequality indicates that F is
a concave function of its argument.25 Integrating by parts yields

¡
Z X2

X1

.X ¡ X1/F 00.X/ d D F.X2/ ¡ F.X1/ ¡ F 0.X2/.X2 ¡ X1/

(20)

Based on the concavity of F and the result on the right-hand side,

F.X2/ ¡ F.X1/ ¡ F 0.X2/.X2 ¡ X1/ ¸ 0 (21)

where the equalityholds if and only if X2 D X1 . Comparing Eq. (21)
with Eq. (19) demonstrates that, for this case, nonnegative entropy
generation (required by the second law) is equivalent to asserting
the concavitypropertyof entropywhen S D S.T /. Similar examples
can be constructed for other cases involving variations of entropy
with more than one variable.
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Compatibility Condition
The second important property of entropy is the following com-

patibility condition for reversible processes:

F;Q D S;Q FF ;Q (22)

In Eq. (22), F;Q refers to the entropy � ux derivativematrix (second-
order tensor). Also, FF ;Q is a third-order tensor because it describes
a derivative of � ux terms in three space directions with respect to
the conservation variables. The compatibility condition represents
a type of consistency condition between the � uxes of entropy and
the conserved variables.

The importance of the compatibility condition is considered
through an analysis of the following one-dimensionalconservation
law:

@u

@t
C @ f

@x
D 0 (23)

where f .u/ is the � ux of u (dependentvariable).The corresponding
balance of entropy is represented by

PSgen D @S

@t
C @ F

@x
(24)

In Eq. (24), F refers to the transfer of entropy with u.
Thermodynamically, S D S.u/, and let S0 D dS=du refer to the

� rst derivative of the entropy with respect to the variable u. Multi-
plying Eq. (23) by S 0, combining with Eq. (24), and using the chain
rule of differential calculus gives

PSgen D .F 0 ¡ S 0 f 0/
@u

@x
(25)

where @ F=@x D F 0@u=@x . Note that all terms on the right side can
have positive or negative values. This opens the possibility for vio-
lation of the second law, which stipulates that PSgen ¸ 0.

To preclude such a condition, the second law, applied as a con-
stitutive constraint, requires that

F 0 D S0 f 0 (26)

which represents the so-called compatibility condition. The litera-
ture sometimes introduces this condition as a separate axiom, for
example, see Merriam,26 whereas we have already shown that it
actually follows from applying the second law principle directly.
Thus, we have

@S

@t
C @F

@x
D 0 (27)

by substitutionand use of the chain rule once again. From Eq. (24),
it follows that PSgen D 0. This conclusion follows from the strictly
conservative nature of Eq. (27). Theoretically, this condition holds
as a limiting form of

@u

@ t
C

@ f

@x
D ¹

@2u

@x2
(28)

which admits more general solutions and includes a dissipative
transport mechanism.27;28 This insight, although not new, leads to
a novel approach in using the second law in its fundamental form
for prescribing constitutive constraints for numerical calculations.
Moredetaileddiscussionsof concavityand compatibilityconditions
involving entropy are discussed by Camberos.23

Symmetric Hyperbolic Forms
Entropy and the second law can be used to transform the gov-

erning equations to exhibit certain desirable properties when dis-
cretizingthese equations.The bene� ts of transformingtheequations
to symmetric hyperbolic forms have been investigated by Hughes
et al.29 and Harten et al.30 Tadmor has used an entropy inequality
to establish uniqueness and stability of a numerical scheme, after
writing the governing equations in a special self-adjoint form.31

Exergy and Work Potential
Other bene� ts can be realized when constructing the entropy

equations in terms of exergy, or work potential.16;32 For example,
the degradation of work potential due to irreversible losses can be
expressed in terms of units of energy, which may have a more read-
ily interpretedmeaning.The earlierdiscussedconcavitypropertyof
entropy translates into a corresponding mathematical property for
exergy. In particular, the exergy must be a convex function of its
thermodynamic variables.

Numerical Analysis
Second Law Discretization

When Eq. (4) is integratedover a discretevolume and time step,33

PSgen ´
³

Sn C 1
i ¡ Sn

i

1t

´
1 V C

X

i p

Fi p.1SS i p/ ¸ 0 (29)

where the subscripts i , ip and superscripts n, n C 1 refer to nodal
point, that is, center of controlvolume, integrationpoint (at edgesof
the control volume), and time levels at the previousand current time
steps, respectively.Also,1 V and1S are thevolumesizeandsurface
area enclosing the control volume, respectively. The discretization
in Eq. (29) is basedon the transportformof the secondlaw in Eq. (4),
whereas another representation can be obtained from the positive
de� nite form of Eq. (11).

Once the solutionvariables from the conservationequationshave
been obtained, together with the entropy equation of state, the dis-
crete entropy production rate can be determined from Eq. (29). Ob-
serve that a reconstruction step is required in Eq. (29) because the
spatialdistributionof the conservationvariablesmust be determined
from nodal values. Special caution must be exercised when calcu-
lating entropy in terms of those variables, so that the second law
is not violated during that reconstructionstep. A possible approach
is to use piecewise constant values of the conservation variables,
thereby assuming a type of quasi-equilibriumcondition.24

Numerical Stability
The relevance of the second law in regards to numerical stabil-

ity of � uid � ow simulations has been documented by Merriam,26

Dutt,34 and others. For example, Merriam shows that a suf� cient
condition for numerical stability of a � nite difference CFD model
is a positive entropy production throughout the domain.26 Numeri-
cal predictions that would otherwise become unstable may enhance
entropy production through dissipation terms to ensure numerical
stability. When the second law principle (nonnegativeentropy gen-
eration) and the concept of entropy are expanded and developed, it
can be shown that an alternative to linear stability analysis exists
based on such concepts.

Because of the universality of the entropy concepts introduced,
they apply to any of the common partial differential equations of
thermal and � uid dynamics. These attempts seek to address the
question of strong numerical stability by extending the modi� ed
equation technique pioneered by Warming and Hyett4 and others.
The modi� ed equation for the balance of entropy provides a pow-
erful yet simple method for gauging a numerical method’s stability
propertiesbecausenumericalstability is directly related to the over-
all generation of entropy.23 Additionally, the second law provides
a way to gauge the local quality of the solution because spurious
oscillations in the numerical solution can arise under conditions of
entropy destruction.26

Uniqueness
Entropyand the second law have an important role in establishing

the physically relevant and unique numerical solution of nonlinear
equations.14;27 Use of the second law in the context of numerical
analysis and stability is not entirely new. In fact, soon after the con-
cept of numerical stability was understood,work began in applying
the second law, or something like it, to provide rational criteria for
selectingthecorrect,that is, physicallyrelevantsolutionto thepartial
differentialequationsof interest.Thus, by analogy, a pioneeringuse



364 NATERER AND CAMBEROS

of the second law provided additionalmathematical constraints that
determinedphysicallyrelevantsolutionsto thedifferentialequations
encountered. With such second law consideration, these equations
often exhibit nonunique and discontinuoussolutions.15

Arti� cial Dissipation
The second law offers a physically based and rigorous approach

to arti� cial dissipation for numerical stabilitization.35 The local en-
tropy production rate provides a quantitativemeasure of the numer-
ical dissipation added and the amount required for stable compu-
tations. It has been observed that an upwind bias to interpolation
between grid points increases the entropy production in the adja-
cent elements.26 Numerical schemes can be constructed to ensure
that the second law is satis� ed locally.36 A limited diffusive � ux
(called smoothing) is added to stabilize a second-order � nite dif-
ference scheme. In certain cases, satisfying the entropy constraint
can be shown to be total variation diminishing (TVD).36 Majda and
Osher attempt to ensure compliance with the second law by modi-
fying the numerical viscosity of numerical schemes.37

Nonphysical Results
Solutions of the conservation equations do not preclude results

that may exhibit nonphysicalbehavior, such as undershootsor over-
shoots. In many instances, detailed grid re� nements are too time
consuming or expensive, or experimental data are not available, so
that assessing the physical reliability of computed results is dif� -
cult. In those cases, the second law offers a physicallybased way of
detecting the plausibility of such results.

The requiredamount of arti� cial dissipation,based on the second
law, can be used to eliminate nonphysical results, including over-
shoots or undershoots. Consider the following results obtained by
a control-volume-based� nite element method.33 In Figs. 1 and 2,
a one-dimensionalshock tube problem is shown.18 Shock tubes are
used for investigatingvarious physical phenomena involving high-
temperaturegases in aerodynamics,transonicand supersonic� ows,

Fig. 1 Shock tube problem, where for air R = 287 J/kg ¢ K, cp = 1004
J/kg ¢ K, ° = 1.4, and T = 293 K.

Fig. 2 Entropy corrected velocity.

wave interactions, � ame propagation, and chemical reaction kinet-
ics. A diaphragm initially separates the tube into high- and low-
pressure regions, but after it is removed, a shock wave propagates
into the low-pressure section (right side) of the tube. In Fig. 2, the
second law has been used to provide an entropy-based viscosity to
reduce/eliminate the overshoot of predicted velocity at the shock
wave position.18 As detailed in Ref. 18, the entropy-basedviscosity
is a postprocessed calculation of numerical viscosity correspond-
ing to the magnitude of entropy generation, as computed from the
second law. It is based on a rearrangement of Eq. (11), in an effort
to bring closer compliance of the CFD calculations with the sec-
ond law. In this way, a predictive mechanism based on the second
law is used to enhance the numerical stability and identify/remove
nonphysical computed results.

Nonlinear Iterations
When the nonlinear conservationequations are solved, iterations

are requiredbetween and within the equationsuntil solutionconver-
gence is achieved.These iterationsare continueduntil some accept-
able reduction of the residuals has been obtained. The following
residuals are de� ned, where the subscript i refers to node i and
the superscripts n and n C 1 refer to current and previous itera-
tion values, respectively. Numerical iterations are continued until
a representative solution residual falls below a speci� ed tolerance.
Examples of possible residuals are shown as follows.

Maximum mass density difference:

RES1 D
½n C 1

i ¡ ½n
i


max

Mass density difference:

RES2 D
«
.½n C 1 ¡ ½n/2

i

¬ 1
2

The rms pressure difference:

RES3 D
«
.pn C 1 ¡ pn/2

i

¬ 1
2

Average global entropy difference:

RES4 D jS.QQn C 1/ ¡ S.QQn/j

It has been shown that � uid entropy serves as an effective gen-
eralized metric, which is indicativeof residual error in iterations of
the � uid � ow equations.38 Fluid entropy is relatively easy to calcu-
late for gases, as well as incompressible substances. Also, entropy
generation is a nonnegative quantity, which is important in certain
numerical calculations. In such calculations, the magnitude of en-
tropy is dependent on the selection of reference conditions for the
entropy equation of state, that is, Eqs. (13–15).

Examples of such bene� ts of using entropy in nonlinear itera-
tions are shown in Figs. 3 and 4 (Ref. 38). The explicit solutions
in Figs. 3 and 4 were obtained based on the Euler equations with a
variation on the Steger–Warming � ux-vector splitting algorithm.39

Fig. 3 Supersonic two-dimensional wedge � ow.
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Fig. 4 Wedge � ow results.

The upwind method includes � ux-differencesplitting.40 An explicit
solution of a supersonic two-dimensional wedge � ow is shown in
Figs. 3 (density contours) and 4 (iteration history for � ow vari-
ables). The oblique shock wave is oriented at the correct location
as predicted by theoretical gasdynamics. (Note smearing of shock
wave due to the explicit, � rst-order scheme.) Solution convergence
is achieved after about 300 iterations. Because the entropy-based
norm is functionally dependent on all state variables, it is shown
to provide a reliable criterion for establishing convergence of the
nonlinear iterations.38 In Fig. 4 and upcoming results, the entropy-
based norm is de� ned as the average entropy difference over the
computationaldomain (weighted by the local grid cell spacing), as
indicatedby the earlierde� ned RES4 and furtherdetailed in Ref. 38.
Similarly, the other variables illustrated, such as mass density, ki-
netic energy, and so on, are de� ned analogously with respect to the
average difference of that variable over the domain. For example,
the mass density curve is based on the earlier de� ned RES2 .

When iterations of nonlinear equations involving phase change
heat transfer are performed, the second law can be used in guiding
these iterations.24 In phase change problems, a tentative phase dis-
tribution is required before the solution of the governingequations.
If the computed solution yields a different phase distribution than
that tentative distribution, then further iterations are required until
convergence between these distributions is achieved. The second
law can be effectively used in this iterative process. In particular,
the tentative phase within a control volume should yield a posi-
tive entropy production rate. If the second law is violated, then an
entropy-basedcorrection may be applied to accelerate the iterative
process.24;41

Convergence Criteria
A numerical solution of a thermo� uid problem is said to be con-

vergedwhen furthercalculationsat thegiventime stepwill have little
or no effect on the � ow� eld representation.Such convergenceis de-
terminedbynumericalcriteria,suchas a selectedresidualdecreasing
below a speci� ed tolerance. An entropy-basedresidual, RES4, was
de� ned earlier, thereby introducing the relevance of the second law
in convergencecriteria. Fluid entropy, S D S.QQ/, is functionallyde-
pendent on all state variables, thereby making it an effective choice
as a convergence indicator. Also, entropy has a physically relevant
signi� cance embodied by the second law, which gives convergence
studies a unique physical perspective.Previous studies have shown
the effectiveness of entropy-based residuals in assessing various
convergence characteristicsof a numerical method.38

An important question involves how to minimize the number of
iterationswithout compromisingthequalityof a numericalsolution.
It may be suf� cient to measure the residual error by monitoring
the difference in the slope as entropy changes with each time step.
This would have to be done once the residual has dropped three
or four orders of magnitude from its initial value, to make sure

that the iteration curve for the representativevariable (entropy) has
“� attened out” enough.

Figures 5–8 illustrate some applications in gasdynamics that use
entropy as a parameter in reaching solution convergence. A super-
sonic two-dimensionalPrandtl–Meyercenteredexpansion(explicit)
is illustrated in Figs. 5 (Ref. 38) and 6. Contours of constant Mach
numberare shown in Fig. 5 for supersonic� ow overa convexcorner.
This � ow con� guration leads to a centered Prandtl–Meyer expan-
sion fan. The orientationand locationof the predictedexpansionfan
agree closely with the analytic solution of this problem. Figure 6
shows the iteration history for the � ow variables in this problem.
Althoughkinetic energy appearsconvergentafter 100 iterations, the
iteration histories of other variables � atten out after about 250 iter-
ations. This result indicates that a representative � ow variable that
takes into account all state variables, that is, entropy difference or
norm, should be used in the convergence criterion. Otherwise, the
iterations may be prematurely terminated. Entropy possesses the
important bene� t of physical signi� cance embodied by the second
law of thermodynamics.

Supersonic two-dimensionalblunt-body� ow is shown in Figs. 7
(Ref. 38) and 8. This problem is a good example of a problem

Fig. 5 Prandtl–Meyer two-dimensional expansion.

Fig. 6 Computed Prandtl–Meyer � ow results.

Fig. 7 Supersonic blunt-body � ow.
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Fig. 8 Blunt-body � ow results.

exhibiting the formation of a bowed shock wave. Because the nu-
merical results of Mach number contours in Fig. 7 were obtained
with a � rst-order, explicit scheme, the bowed shock is thick, but
located approximately at the correct position as predicted by the-
oretical gasdynamics. Similar entropy results of iteration history
in Fig. 8 give further evidence of the robustness and applicability
of an entropy-basednorm for two-dimensional problems involving
curved shock waves.

Numerical Error
Unlike conventionalerror indicatorsbased on Taylor seriesmeth-

ods, the second law offers a physical basis from which CFD error
analysiscan be studied.In typicalerror indicators,it is oftendif� cult
or impractical to evaluate higher-order derivatives therein because
those derivatives may be unbounded. On the other hand, the in-
equality of the second law may be used to assess systematically
the errors without such higher-order derivatives. Harten et al.42 use
certain entropy conditions as a way of reducing overshoot and un-
dershoot errors in compressible � ow computations. Because it can
placeboundson the solutionnorm,43 the secondlaw has relevancein
outliningthe boundsof numericalerrors.Other studieshavedemon-
strated that such errors are accumulated when certain second law
conditions are violated.44

In certain cases, there exist direct relationships between numer-
ical error and the apparent error in entropy production.45 The dif-
ference between entropy production rates, computed based on their
positive de� nite and transport forms, can be used as a more general
error indicator for coarse grids. Also, a weighted entropy residual
can serve as an effective error indicator.46 Because of its physical
basis in the second law, these entropy-basederror indicatorscan en-
compass more types of numerical errors, including both overall and
individual parts of the formulation, rather than only certain types
of errors. Unlike other conventional � nite element error indicators
limited to restricted classes of problems,47 the second law offers
a promising physically based alternative to better understand and
predict numerical errors.

An example using an entropy-based error metric is shown in
Figs. 9 and 10. The implicit solution for the nozzle problem was ob-
tained by a Gauss–Seidel line relaxationtechniquefor the thin-layer
Navier–Stokes equations. The results from converging–diverging
two-dimensional nozzle � ow are summarized in Figs. 9 and 10
(Ref. 38). The lower portion of the nozzle is shown with the noz-
zle centerline corresponding to the upper portion of Fig. 9. The
inlet conditions are subsonic and the velocity vectors are shown in
Fig. 9. In Fig. 10, the following two methods are used for imposing
the wall boundary condition: 1) speci� ed normal � ux term equal to
pressureat the wall and 2) � ux-splittingtechniqueusing the layer of

Fig. 9 Nozzle two-dimensional � ow.

Fig. 10 Error metrics.

cells adjacent to the wall to create a layer of “ghost cells” with the
normal velocity component re� ected. In both methods, the resid-
ual error metric based on the entropy difference indicates solution
convergence at about 50–70 iterations.

Subgrid Modeling
When applied locally, the second law has relevance in subgrid

modeling because its inequality imposes certain constraints on the
variables discretized. If such constraints are violated locally, then
numerical errors can be traced back to the corresponding local ap-
proximations made. In this way, a link between subgrid modeling
and the second law can be established.For example, Merriam shows
that an upwind bias to interpolation between grid points increases
the entropy production in the adjacent elements.26

Consider another speci� c example involving convectiveupwind-
ing. In Boltzmann-type schemes, convective transport is based
on phase–space trajectories of individual “particles.” In modi� ed
Boltzmann schemes, that is, those of Deshpande,48 Reitz,49 and
Pullin,50 a series of error functions are computed (based on nor-
mal probability densities) to derive the difference equations. Other
examples of convective upwinding include the exponential differ-
encing scheme and skew upwind differencingscheme. In numerical
upwinding, an approximationof the local transportedquantity, that
is, velocity at the edge of a control volume, is required in terms of
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surrounding nodal values. These local upwinding approximations
should not be averse to the requirements of the second law.

In terms of the conserved variables QQ and associated � ux terms
FF , it can be shown that their subgrid evaluation can be written in
terms of entropy as follows33:

PSgen D S;Q.QQ;t C FF ;x / C 1
2
S;tt 1t ¸ 0 (30)

The numerical entropy production of each individual contribution
should be high enough to prevent a net negative sum, that is, pre-
vent a violation of the second law. Otherwise, it is anticipated that
the resulting computational error may lead to weak convergenceor
unstable results. Individual discrete approximations can be assem-
bled together into Eq. (30). Then, the second law can be enforced
locally through proper subgrid modeling. In this way, errors asso-
ciated with individual components of the overall model, such as
numerical upwinding, can be reduced through compliance with the
second law.

Predictive–Corrective Measures
The second law can provide a useful basis for predictive–

corrective measures in numerical calculations.An example involv-
ing phase change heat transfer in an enclosure is shown in Figs. 11
and 12 (Ref. 51). In that analysis, the magnitude of computed neg-
ative entropy production is used in a corrective manner to improve
the solution accuracy. Discretization errors, due to inadequate spa-
tial or temporaldifferencing,may lead to such negativevalues. If the
second law is violated locally, then a quantitative indication of the
diffusivity required (denoted by ks ) to correct the solution may be
expressed in terms of the negativeentropy productionrate (absolute
value), based on Eqs. (4) and (11), that is,

ks ¼ j PPs j
µ

T 2

rT ¢ rT
C

T

8

³
cp

Pr

´¶
(31)

When this entropy-based diffusivity is used, the corrected solution
can achieve closer compliancewith the second law, thereby leading
to more stable computations with reduced numerical error.

Sample results from this type of predictive–corrective algorithm
are shown in Fig. 12. In Fig. 12, an entropy-basedconductivityhas
been used to improve the numerical accuracy of the predicted inter-
face position,while improving the overall numericalstability.(Note

Fig. 11 Phase change schematic.

Fig. 12 Interface position.

Fig. 13 Entropy production.

that Fo refers to Fouriermodulus,or dimensionalesstime.) This im-
provement is quanti� ed with respect to computed positive entropy
production in accordance with the second law (Fig. 13). Other ex-
amples of entropy-basedcorrections of numerical heat transfer are
cited in the literature, for example, Nellis and Smith.52

Time Step Limitations
Time step restrictions for stable time advance, as well as the sec-

ond law, both involve inequalities.Use of the second law in properly
selectingthe time stepsizehasbeenreportedpreviously.44;53 Numer-
ical approximations,as alreadydiscussed,generally do not result in
zero entropy generation, even for the simulation of adiabatic, invis-
cid � uid � ow. In the context of explicit time advance, consider the
following strategy for securing numerical stability in view of time
step selection and the second law:

1) Write the numerical formula for the conservation law as an
explicit update equation for approximating the exact solution.

2) Write the approximation error L 1 according to L 1 ´ [u.t C
1t ; x/ ¡ un C 1

j ]=1t . Then, expand all terms in a Taylor’s series,
equating the result, up to the truncation error, to zero.

3)Derive theexpressionfor theentropygenerationbymultiplying
the error from step 2 by S0 and use the compatibility property to
simplify.

4) Analyze the leadingerror terms to enforcenonnegativeentropy
generation, by analogy with the second law. Then, an inequality
involving the time step may be derived.

Other conditions, such as monotonic conditions,54 are suf� cient
but not necessaryconditionsfor numericalstability.For linear equa-
tions, the CFL conditions and results from a second law anal-
ysis satisfy the monotonic requirement in some cases. However,
for nonlinear equations, it has been shown that the CFL condition
can lead to over- or underpermissive time step restrictions.53 The
logic of an entropy-based approach is deeply rooted in the physi-
cal/mathematical theory that gives its universality and power, the
second law of thermodynamics.It is this universality that can be ex-
ploited to provide a physicallybased way of establishingthe proper
time step size.

As an exampleof this approach,considera one-dimensionalprob-
lem combined with the second law to identify a nonlinear time step
constraint for stable computations. The discrete operator for the
scalar transport equation, L d .QQ/, is written in terms of the analytic
(differential)operator, L a.QQ/, and higher-order terms arising from
the Taylor series expansion (see Ref. 44), that is,

L d .QQ/ D L a.QQ/ C 1
2 ½u0.u01t ¡ 1x/QQ;x x (32)

where u0 refers to a characteristic,or lagged, velocity for lineariza-
tion of the nonlinear convection term. Also, 1t and 1x refer to the
time step and grid spacing, respectively.In Eq. (32), the discreteop-
erator depends on the second-order spatial derivative of the scalar
QQ and higher-order terms (neglected).
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Then, through pre-multiplication by an entropy derivative, SQ,
the preceding result can be transformed into an expression for the
entropy production rate, that is,

PSgen D ¡ 1
2 ½u0.1x ¡ u01t/S;QQ.QQ;x /2 ¸ 0 (33)

The second law requires a positive entropy production rate, so that

u01t=1x · 1 ! CFL condition (34)

As a result, the well-known CFL condition1 for numerical stability
follows from the second law under the conditions outlined for this
exampleproblem.Thus, the second law can providea physicalbasis
and guidance for the selection of appropriate time steps for stable
computations.

Inverse Methods
In the earlier described direct problems, the solutions of the � uid

� ow and heat transfer equations give the consequences, that is, ve-
locityor temperaturedistribution,of a givencause, that is, boundary
condition. On the other hand, an inverse analysis attempts to � nd
the unknown causes of known or desired consequences.55 Inverse
problemscan be ill posed in the sense that small perturbationsin ob-
served measurements may lead to large changes in the solution. As
a result, special techniques such as entropy-based techniques may
be adoptedto stabilize the computationsarising in inversesolutions.

A measured or desired characteristicof a problem, such as inter-
face motion in phase change problems, can be controlled through a
boundary condition (such as boundary temperature). In this case, a
sensitivity coef� cient is often used in inverse problems to describe
the effect of a change in the controllingvariable(boundarytempera-
ture) on the controlledvariable (interfaceposition).However, as the
interface moves farther away from the boundary, the sensitivity co-
ef� cient decreases such that it becomes more dif� cult to control the
interface motion from the external boundary.As a result, numerical
oscillations are often coincident with resulting instabilities. It has
been shown that the second law can provide a physically based sta-
bility mechanism.56 In particular, if negative entropy production is
computed in the vicinityof numerical oscillations,then a corrective
mechanism(based on this negativevalue)may be appliedbefore the
next time step. In this way, an entropy corrected sensitivity coef� -
cient may provide a robust and effective alternative to conventional
stabilizing techniques, such as future time stepping, that is, using
estimated future coef� cient values.

Consider an example where the boundary temperature at the left
wall is used to control the motion, position, and shape (all speci� ed)
of the advancing phase interface in Fig. 14 (Ref. 56). Although the
predicteddecreaseof the wall temperatures in Figs. 15 and 16 agree
well with analytical solutionsat earlyperiodsof time, some discrep-
ancy arises after long periods of time. Numerical instability arises
from reduced sensitivity coef� cients in the inverse solution once
the interface moves suf� ciently far from the controlling boundary
[Fig. 15 (Ref. 56)]. The oscillationsare reduced/eliminated, and the
algorithmis stabilizedby an entropy-basedcorrectionin view of the
second law.

Further details regarding the problem parameters, boundary and
other conditionsfor problems reported in this sectionare outlinedin
Refs. 18, 38, 51, and 57. These references also include documenta-
tion involvingveri� cation and validationof the computed results, as
well as other detailed information in regards to quanti� ed accuracy
of the results.

Fig. 14 Inverse problem.

Fig. 15 Without entropy correction.

Fig. 16 With entropy correction.

Applications
Flow and Phase Change Phenomena
Compressible Flows

It appears that the earliest applicationsof the second law to CFD
predictions were made in the context of compressible � ows.28;57

Many of the techniques and sample results presented in preceding
sectionswere developed for compressible � ows. Other applications
are described by Cox and Argrow,58 as well as Borth and Argrow.59

In those and other studies, compressible � ow solutions in complex
� ow� elds are analyzed in view of the second law. Compressible
� ows represent an important type of CFD problem where the im-
portance of the second law has been well established.

Incompressible Flows
Although less documented than compressible � ows, the second

law has been applied to some incompressible� ow CFD studies. For
example, Drost and White60 use a numerical method to predict the
local rate of entropy production due to a � uid jet impinging on a
heatedwall. These calculationsare used to optimize the designof an
impinging jet heat exchanger. The optimum jet Reynolds number,
which minimizes the entropy generation in the jet, is determined.
Other incompressible � ow studies include work by Cheng et al.,61

whereby entropy production is used in the analysis of mixed con-
vection in a vertical channel with transverse � n arrays.

Phase Change Heat Transfer
Predictive models of phase change heat transfer are widely used

in a variety of practical applications, such as materials processing,
that is, casting solidi� cation,extrusion,and injectionmolding;man-
ufacturing,that is, weldingand rapidprototyping;deicingof aircraft
and other structures; and thermal energy storage. In phase change
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applications, another mechanism of entropy production, namely,
the entropy of phase transformation, is encountered.62 As with ear-
lier applications, entropy can serve as an effective parameter for
better understanding of various physical processes during phase
change. For example, interface properties and roughness are de-
termined from the entropy change during solid–liquid phase tran-
sition. In solidi� cation problems, dendritic arms often grow in a
direction correspondingto the maximum thermal irreversibilitybe-
cause it is aligned with the heat � ow direction, that is, direction
of local temperature gradient. Other examples, such as thermal re-
calescence, are linked to the entropy change and production during
phase transition.63

Certain modi� cations of earlier results are requiredwhen consid-
ering phase change problems.For solid–liquid systems, the entropy
generation at the phase interface (subscript i ) becomes17

Sgen;i D ½s

½l

³
1S f ¡

1E f

T

´
C

kl

½l Vi

dT

dn


l

³
1
Tl

¡ 1
Ts

´
¸ 0 (35)

where 1S f D sl ¡ ss is the entropy of fusion (approximately equal
to the heat of fusion divided by the phase change temperature).The
subscriptsl, s, and f refer to liquid, solid and fusion, respectively.In
this type of two-phase mixture, the entropy generation includes ef-
fects such as viscousdissipationdue to shear action along a dendrite
arm, as it moves a discrete distance over a speci� ed time interval.
Entropy generation in other multiphase systems is documented in
Ref. 17.

Turbulence
Turbulence in a � ow� eld usually enhances the production of en-

tropy. Numerical predictions of entropy production in a turbulent
boundary-layer� ow were presentedby Moore and Moore.64 A � nite
volume method for predicting the mean viscous dissipationand en-
tropy productionin turbulent � ows, based on the time-averagedtur-
bulence equations, was described by Kramer-Bevan.65 The method
is applied to turbulent � ows in diffusers to identify � ow losses and
to attempt to develop better diffuser designs. Also, Herard uses en-
tropy characterizationsto develop stable algorithms for turbulence
modeling.66 A more robust compressible � ow solver is considered,
while using a splittingtechniquein agreementwith entropyinequal-
ities.Overall, a relative lack of documentedwork indicates the need
for further work regarding turbulent entropy transport modeling.

Systems and Processes
From engineering thermodynamicsto economics, biology, infor-

mation/coding theory, and other disciplines, the various forms and
applications of entropy are widespread. In the applied sciences, the
second law offers a uni� ed way to strive toward meeting the upper
limits of technology performance. In certain ways, the existence of
entropy can be considered independently of the second law.67 En-
tropy and the second law have signi� cance in many technologies
of importance, including aerospace systems, heat exchangers, and
others.

Aerospace Systems
Minimizing entropy production is equivalent to minimizing ex-

ergy destruction. In that regard, exergy can be used as a effective
basis for developing a uni� ed framework for aircraft system de-
sign, from the overall system level down to each component.68;69

Incorporating the second law in this way precludes the possibil-
ity of nonphysical design scenarios, and it expands the horizon of
possible improvements. It can provide a more complete system in-
tegration that connects all results in a design involving a common
metric, namely, entropyproduction(or exergydestruction).Further-
more, it can better evaluate tradeoffs between dissimilar technolo-
gies within this uni� ed system context. For example, the U.S. Air
Force Research Laboratory has investigated exergy-based ways of
developing a uni� ed framework for the design, analysis, and opti-
mization of next-generationaerospacevehicles.70 In these methods,
the second law is used as a fundamental design constraint to com-
plement traditional methods based on the � rst law.

Heat Exchangers
In thedesignof heatexchangers,a typicalgoal involvesincreasing

the rates of heat transfer, without excessively increasing the pres-
sure drop throughout the system. Ratts and Brown71 use entropy-
generation minimization (EGM) to improve the system ef� ciency
of a cascadingrefrigerationcycle, involvingheat exchangers.Many
thermal techniques,such as � ns and baf� es, are effective in enhanc-
ing the rate of heat transfer, but at the expense of excessive pressure
losses. This tradeoff can be effectively expressed through a desired
minimization of total entropy production. Thus, combining CFD
and entropy generation predictions in applications involving heat
exchangers is a worthy undertaking. Examples of such studies are
given in Refs. 72–76.

Turbomachinery
When the local sources of losses are identi� ed through � ow

irreversibilities, better turbomachinery designs can be developed.
For example, Sciubba discusses the bene� ts of calculating entropy
locally, thereby leading to improvements in the design of axial
turbines.77 Turbomachinerypredictionstypically involveseveralas-
pects of � ow classi� cations discussedearlier, such as compressibil-
ity, turbulence, and possibly phase change.

Materials Processing
Entropy productionhas important consequencesin variousmate-

rials processingtechnologies.For example, the microstructuresand
morphologicalstabilityof a solidi� ed phase interfaceare dependent
on the molecular disorder at the interface, that is, entropy transport.
The extent of entropy change during thermal processing of mate-
rials affects the molecular disorder and properties of the solidi� ed
material.78

Entropy predictionscan give deep insight into various fundamen-
tal material processes. Consider an example involving iron oxide
processing,whereby the oxide can have a squaresymmetry of atoms
in the iron surface where the oxide grows. Entropy and atomic sym-
metry are closely related, and so microscale entropypredictionscan
give important clues about what causes corrosion in this material.
Furthermore, considermaterials used in electronicsapplicationsfor
semiconductortechnologies.For instance,concentrichexagonalpits
in cadmium sul� de (a widely used semiconductor)have a high crys-
tal symmetry. Dislocation defects can largely degrade the electrical
properties of this semiconductor, that is, increase/decrease conduc-
tivity by 1000–100,000 times. In this context, dislocation defects
could be reduced through minimal entropy production during ma-
terial formation.

Microelectronics Cooling
Another example application of signi� cance is effective cooling

of microelectronic assemblies. Predicted entropy production can
be used to � nd the minimum power input to achieve convective
cooling of an electronic package.79 This minimization of entropy
production is carried out with respect to the heat transfer contact
area and coolant � ow rate. It has been documented that the upper
limits of faster and more compact computing circuits are closely
linked to the second law.80 For each base unit of entropy produced
in a microelectronic assembly, this production corresponds to an
amount of heat that could have been removed through appropriate
cooling, but was not removed due to the system irreversibilities.

Optimization of Thermo� uid Systems
A broader goal of incorporating entropy predictions into CFD

solvers is to use these predictions for system level optimization
purposes.Local EGM with numerical methods providesextra � exi-
bility, in terms of geometricalcon� guration,in additionto analytical
methods.81;82 For example, applications involving entropy produc-
tion with natural convection in cavities are presented by Baytas.83

Darcy’s law and the Boussinesq approximation are used, whereas
the second law is discretized with a � nite difference method. The
predictedentropy generationgives useful information for the selec-
tion of a suitable angle of inclinationof the cavity. This representsa
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physical example of how entropy predictionscan complement stan-
dard CFD solvers. In other recent advances, the global optimization
of irreversibility,or global maximization of � ow access, has shown
that a complete� ow architecturecan bederivedfrom this constructal
principle.84 Also, it has been shown that the optimal con� guration is
situatedwhere the imperfections(such as entropygeneratedby � ow
resistance)are distributedevenly througha heterogeneous� ow sys-
tem. Many other advances and applicationsare expected to become
evident in future research.

Conclusions
A reviewof thediverserolesofentropyand the secondlawin com-

putational thermo� uids has been presented. It has been shown that
the second law is closely related to discretization error, numerical
stability, and other characteristics of numerical models. Assessing
the reliability and performance of a computational model typically
requires validation through comparisons with available experimen-
tal data. However, in many applications,experimental testing is too
time consuming or expensive. In the absence of proper benchmark
data, the secondlaw providesan important tool for establishingerror
bounds. Areas of recommended future research include extensions
of CFD entropy predictions to more complex physical processes,
such as multiphase, reacting, and turbulent � ows. Also, ensuring
that computational methods obey the second law is expected to
provide stronger links to numerical stability, well-establishederror
bounds, and robustness.
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